Ad-Hoc Secure Two-Party Computation on Mobile Devices using Hardware Tokens
نویسندگان
چکیده
Secure two-party computation allows two mutually distrusting parties to jointly compute an arbitrary function on their private inputs without revealing anything but the result. An interesting target for deploying secure computation protocols are mobile devices as they contain a lot of sensitive user data. However, their resource restriction makes the deployment of secure computation protocols a challenging task. In this work, we optimize and implement the secure computation protocol by Goldreich-MicaliWigderson (GMW) on mobile phones. To increase performance, we extend the protocol by a trusted hardware token (i.e., a smartcard). The trusted hardware token allows to pre-compute most of the workload in an initialization phase, which is executed locally on one device and can be pre-computed independently of the later communication partner. We develop and analyze a proofof-concept implementation of generic secure two-party computation on Android smart phones making use of a microSD smartcard. Our use cases include private set intersection for finding shared contacts and private scheduling of a meeting with location preferences. For private set intersection, our token-aided implementation on mobile phones is up to two orders of magnitude faster than previous generic secure two-party computation protocols on mobile phones and even as fast as previous work on desktop computers.
منابع مشابه
Secure Computation Using Leaky Tokens
Leakage-proof hardware tokens have been used to achieve a large number of cryptographic tasks recently. But in real life, due to various physical attacks, it is extremely difficult to construct hardware devices that are guaranteed to be leakage-proof. In this paper, we study the feasibility of general two-party computation using leaky hardware tokens. Our main result is a completeness theorem t...
متن کاملUniversally Composable (Non-Interactive) Two-Party Computation from Untrusted Reusable Hardware Tokens
Universally composable protocols provide security even in highly complex environments like the Internet. Without setup assumptions, however, UC-secure realizations of cryptographic tasks are impossible. To achieve efficient protocols, practical setup assumptions are needed. Tamper-proof hardware tokens, e.g. smart cards and USB tokens, can be used for this purpose. Apart from the fact that they...
متن کاملGeneral Statistically Secure Computation with Bounded-Resettable Hardware Tokens
Universally composable secure computation was assumed to require trusted setups, until it was realized that parties exchanging (untrusted) tamper-proof hardware tokens allow an alternative approach (Katz; EUROCRYPT 2007). This discovery initialized a line of research dealing with two different types of tokens. Using only a single stateful token, one can implement general statistically secure tw...
متن کاملEfficient Secure Two-Party Computation with Untrusted Hardware Tokens (Full Version)
We consider Secure Function Evaluation (SFE) in the client-server setting where the server issues a secure token to the client. The token is not trusted by the client and is not a trusted third party. We show how to take advantage of the token to drastically reduce the communication complexity of SFE and computation load of the server. Our main contribution is the detailed consideration of desi...
متن کاملFounding Cryptography on Tamper-Proof Hardware Tokens
A number of works have investigated using tamper-proof hardware tokens as tools to achieve a variety of cryptographic tasks. In particular, Goldreich and Ostrovsky considered the problem of software protection via oblivious RAM. Goldwasser, Kalai, and Rothblum introduced the concept of one-time programs: in a one-time program, an honest sender sends a set of simple hardware tokens to a (potenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014